Alumina-supported vanadium nanoparticles: structural characterization and CO adsorption properties.
نویسندگان
چکیده
Alumina-supported vanadium particles were prepared under ultrahigh vacuum (UHV) conditions and characterized with respect to their structural and CO adsorption properties. As supporting oxide, we used a thin, well-ordered alumina film grown on NiAl(110). This allows the application of scanning tunneling microscopy (STM), infrared reflection-absorption spectroscopy (IRAS), and X-ray photoelectron spectroscopy (XPS) without charging effects. Vanadium evaporation under UHV conditions leads to the growth of nanometer-sized particles which strongly interact with the alumina support. At very low vanadium coverages, these particles are partially incorporated into the alumina film and get oxidized through the contact to alumina. Low-temperature CO adsorption in this coverage regime permits the preparation of isolated vanadium carbonyls, of which we have identified mono-, di-, and tricarbonyls of the V(CO)(y)() type. A charge-frequency relationship was set up which allows one to quantify the extent of charge transfer from vanadium to alumina. It turns out that this charge transfer depends on the V nucleation site.
منابع مشابه
Vanadium oxide surfaces and supported vanadium oxide nanoparticles
The information obtained from the characterization of vanadium oxide single crystal surfaces is related to the study of vanadia nanoparticles supported on silica and alumina thin films, model systems for the so-called ‘‘supported monolayer vanadia catalysts’’. It is found that these particles have properties similar to V2O3 surfaces, where the topmost V ions are involved in vanadyl groups and h...
متن کاملStructural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations
We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....
متن کاملStructural and electronic properties of CO molecule adsorbed on the TiO2 supported Au overlayers: Insights from density functional theory computations
We have examined the adsorption behaviors of carbon monoxide (CO) molecule on TiO2 anatase supported Au overlayers. The results of density functional theory (DFT) calculations were used in order to gain insights into the effects of the adsorption of CO molecules on the considered hybrid nanostructures. We have investigated different adsorption geometries of CO over the nanoparticles....
متن کاملPreparation and Characterization of High Specific Surface Area γ-Alumina Nanoparticles Via Sol-Gel Method
In the present investigation, γ-alumina nanoparticles with particle sizes less than 10 nm, high specific surface area (351 m2/g), high pore volumes and relatively narrow pore sizes distribution was prepared via sol-gel method in presence of aluminum isopropoxide as an aluminum precursor, distilled water, acetic acid as hydrolysis rate controller and tert-butanol as solvent. They had meso ...
متن کاملIncreasing the Adsorption of Reinforcement Alumina Nanoparticles in Ni-alumina Nanocomposite Coatings by Using Methanol Organic Solvent
To enhance the mechanical properties in Ni-alumina nanocomposite coatings, it is necessary to increase the amount of alumina nanoparticles participation in nickel matrix. The aim of this study is the compassion investigation of Ni-Al2O3 nanocomposite coatings’ embedded nanoparticles affected by methanol addition to the electrolyte. In this investigation the composition of electrolyte was modifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 126 11 شماره
صفحات -
تاریخ انتشار 2004